

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD

B.E. (Civil Engg.) III Year I-Semester (Main) Examinations, Nov./Dec.-2016

Soil Mechanics

Time: $\mathbf{3}$ hours
Max. Marks: 70
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A ($10 \times 2=20$ Marks)

1. Differentiate between Specific Gravity of solids and mass Specific Gravity.
2. The in-situ void ratio of a soil mass is found to be 0.80 . If its maximum and minimum void ratios are 1.10 and 0.50 respectively, determine the relative density of the soil at site.
3. Between clay and sand which is more porous and which is more permeable?
4. What is the critical hydraulic gradient for a soil having specific gravity $\mathrm{G}=2.7$ and void ratio $\mathrm{e}=0.70$?
5. Define over consolidation ratio. What is its maximum value?
6. The primary consolidation settlement of a 6 m thick clay layer with single drainage is estimated as 90 cm . Later it was found that, the medium has double drainage. Then, all other parameters remaining same, what will be the primary consolidation settlement?
7. The unconfined compressive strength of a soil is 100 kPa . Determine its shear strength.
8. Explain the significance of shear strength in soils.
9. Explain in brief about Taylor's stability number.
10. Determine the depth of tension crack developed in a $\phi=0$ soil having cohesion $\mathrm{c}=35 \mathrm{kPa}$ and $\gamma=18 \mathrm{kN} / \mathrm{m}^{3}$.

Part-B $(5 \times 10=50$ Marks $)$
 (All bits carry equal marks)

11. a) Explain the laboratory procedure for determination of shrinkage limit and derive the expression for it.
b) In a field exploration, a sample was collected in a sampling tube of internal diameter 5 cm below ground water table. The length of the extracted sample was 10.2 cm and its weight was 387 gm . If $\mathrm{G}=2.7$, and the weight of the dried sample is 313 gm , find the porosity, void ratio, degree of saturation and the dry density of the sample.
12. a) Explain the procedure to draw the phreatic line for a homogeneous earth dam with a horizontal filter using Kozeny's parabola.
b) The water table is located at a depth of 3 m below the ground surface in a deposit of sand 11 m thick. The sand is saturated above the water table. The total unit weight of sand is $20 \mathrm{kN} / \mathrm{m}^{3}$. Calculate the total pressure, pore water pressure, effective pressure at depths of 3,7 and 11 m from the ground surface and draw the pressure distribution diagram.
13. a) What is Terzaghi's one dimensional consolidation theory? Derive it from fundamentals.
b) A soil stratum is 10 m thick with pervious stratum at top and bottom. Determine the time required for 50% consolidation. Given that coefficient of permeability as $10^{-7} \mathrm{~cm} / \mathrm{sec}$, coefficient of compression as $3 \times 10^{-4} \mathrm{~cm}^{2} / \mathrm{gm}$, void ratio as 2 and time factor as 0.197 .
14. a) What is Mohr's circle? Discuss its important characteristics.
b) In a direct shear test, a cohesionless soil sample was failed at a shear stress of 45 kPa under a normal stress of 60 kPa . Sketch the Mohr's circle and determine i) The shear parameters ii) The principal stress iii) The orientation of the principal planes.
15. a) What are different types of slope failures? Explain in detail.
b) A 9 m high retaining wall with a vertical face is supporting a backfill with horizontal top consisting of two types of soils. The water table is located at a depth of 5 m below the top. The properties of soil from 0 to 3 m include $\mathrm{c}=0, \phi=33^{\circ}, \gamma=17 \mathrm{kN} / \mathrm{m}^{3}$ and those for soil from 3 m to 9 m include $\mathrm{c}=0, \phi=40^{\circ}, \gamma=18.5 \mathrm{kN} / \mathrm{m}^{3}, \gamma_{\text {sub }}=20.5 \mathrm{kN} / \mathrm{m}^{3}$. Plot the distribution of passive earth pressure and determine the magnitude and point of application of total passive earth pressure acting on the retaining wall.
16. a) Explain the methods to determine in-situ density.
b) An unconfined aquifer is known to be 32 m thick below the water table. A constant discharge of $2 \mathrm{~m}^{3} / \mathrm{min}$ is pumped out of the aquifer through a tube well till the water level in the tube well become steady. Two observation wells at distances of 15 m and 70 m from the tube well show fall of 3 m and 0.7 m respectively from their static water levels. Find the permeability of the aquifer.
17. Write short notes on any two of the following:
a) Plate load test
b) Factors affecting shear strength of cohesive soils
c) Coulomb's wedge theory.
